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the precursor decays by an amount
(81) du = dp,/o,a, .

Under the assumed conditions, eq. (78) also applies along the path of the
precursor. Combining eqs. (78) and (81) yields the relation

(82) dp.jdt = —FJ2.

The function F is expected in general to be quite complicated. We can
get a qualitative picture of its effect by assuming the form, for compres-
sion only,

(83) F=(p,—p3)T, Pa> U0

where 7'= constant. Compression by the precursor is assumed to be elastic,
80 P, of eq. (82) lies on a metastable extension of the elastic compression curve,
p2(V). Above the yield point there is a stress pi(V) which will finally be
reached for the given volume V after a very long time. This is curve AB of
Fig. 14 b). According to eqs. (82) and (83), decay of the precursor amplitude,
p.= pi(V) continues until pg (V)= p2(V), which occurs at the static value of
the Hugoniot elastic limit. To see the effect more explicitly, note that

(84) (d/at)(p; —p;) = (1 — ¢*[a?)(dp;/dt)

where ¢*= K/p, a*= (K + 2u/3)/o. If Poisson’s ratio, », is independent of
density, so is ¢*/a®. Then eqs. (82)-(84) can be integrated to yield

(85) pi(V)—p(V) = (p,— P})o €xP [— z/2,] ,
where
(86) zy,=2TD|(1— c?/a?) .

Integrating eq. (84) under the assumption that » = constant enables us to
simplify eq. (85):

(87) P — Prmr, = (P;— Phpr)o XD [— /2] ,

where p}, is the static value of the Hugoniot elastic limit, related to the static
yield strength by eq. (47).

Equation (82) was derived on the assumptions that the precursor follows
a characteristic and that the energy equation, eq. (3), does not affect the prop-
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agation process. A more rigorous expression can be obtained by combining
eq. (77) with egs. (1)-(3) and specializing the result along the shock path [8]:

(88)

Dp,,__(1 u\) (D—u)2—a? %_(D—u)’ ¥ s
D) 3(D—u)*+ a*/2 ox D  3D—ur+a22’

Dz
(89) F'=(1—aly/2u)F .

Here the block derivative, D/Dz, refers to differentiation along the shock
path, op,/cx is evaluated immediately behind the precursor front, and F’ is
a modification to F resulting from the assumption that a fraction « of plastic
work goes into heat. In eq. (89), I" is the Gruneisen parameter. F' and F
differ by less than 109, for metals in which plastic flow occurs.

Under the assumptions that D—u=a and a=0, eq. (88) reduces to
eq. (82).

Considerable effort in recent years has been devoted to attempts to relate
the relaxation function F of eq. (75) to the motion and multiplication of dis-
locations. The basic relation is

(90) dE”/dt = hNbv = F|2u

where N is the number of dislocations per unit area, b is the Burgers vector,
h is a numerical constant the order of units, and » is the mean velocity of
dislocations. Since H,= 2¢,/3 in uniaxial strain, eq. (90) becomes

(91) de,/dt = 3hNbv/2 .

There are various models for multiplication and motion of dislocations. One
which is frequently used is due to GILMAN:

(92) N=N,,(1+ A¢),
(93) V =pux exp [_‘D/T] ’

where

N,, = initial density of mobile dislocations,

»_ = maximum dislocation velocity~wv,,,.,

max
D = drag coefficient,
A = multiplication coefficient,

v = resolved shear stress = (p,— p,)/2.




